Outline for Today Wednesday, Oct. 3

- Chapter 4: Aqueous Reactions and Solution Stoichiometry
 - Balancing Reduction-Oxidation Reactions (Section 20.2)
- Chapter 5: Thermochemistry
 - How is energy transferred or transformed in chemical reactions?

Balancing Redox Reactions

- 1. Separate total reaction into two half reactions.
- 2. Assign Oxidation Numbers to each atom
- 3. Balance each half reaction:
 - A. Balance all elements besides H and O
 - B. Balance O by adding H₂O
 - C. Balance **H** by adding H⁺
 - D. Balance charge by adding e-
- 4. Multiply half reactions by integers so that half reactions have equal number of electrons
- 5. Add the half reactions and simplify!

Balancing Redox Half Reactions (Section 20.2)

• Example 1. Balance:

 $Cu(s)+NO_3^- \rightarrow Cu^{2+}(aq)+NO_2(g)$

• Example 2. Balance:

 $MnO_4^{-}(aq) + C_2O_4^{2-}(aq) \rightarrow Mn^{2+}(aq) + CO_2(q)$

Determining Oxidation Numbers

Species	Oxidation Number
Elemental Atoms	0
Monoatomic Ion	Charge on Ion
Hydrogen Bonded to Nonmetal	+1
Hydrogen Bonded to Metal	-1
Oxygen	Usually -2
Fluorine	-1
Other Halogens	Usually -1
Neutral Molecule	Sum of Oxidation Numbers is 0
Polyatomic Ion	Sum of Oxidation Numbers is Ion charge