Suppose that V, W, Z etc. are subspaces of F^m, F^n, F^k etc. respectively, where F is \mathbb{R} or \mathbb{C}. As usual $\| \cdot \|_V$, $\| \cdot \|_W$, $\| \cdot \|_Z$, etc. denote the Euclidean norms on V, W, Z etc. respectively.

1 **Notation.** We write B_1, \overline{B}_1 and ∂B_1 for the sets \(\{ x \in V \mid \|x\| < 1 \} \), \(\{ x \in V \mid \|x\| \leq 1 \} \) and \(\{ x \in V \mid \|x\| = 1 \} \) respectively, and refer to these as “the (Euclidean) unit ball”, “the closed unit ball” and “the unit sphere (of V)” respectively.

2 **Definition.** A function $F : V \to W$ is said to be “a Lipschitz function” if there exists a non-negative constant α such that
\[
\forall u, v \in V : \| F(u) - F(v) \|_W \leq \alpha \| u - v \|_V .
\]

3 **Fact.** It turns out that when F is a Lipschitz function, there exists the smallest non-negative α for which (1) holds. This α is said to be “the Lipschitz constant” for F, and we denote it by \mathcal{L}_F.

It is obvious that $\mathcal{L}_F \geq 0$, and the equality holds if and only if F is a constant function.

4 **Problem.**

1. Show that every linear function $A : V \to W$ is a Lipschitz function.

2. Show that if $A \in \mathcal{M}_n$ is a diagonal matrix, then \mathcal{L}_A is the absolute value of the largest diagonal entry of A.

We will discuss the proof of this fact in class. You can take for granted in the meantime.
3. Give a concrete example (with a full justification) to show that the result of part two becomes false if the words “diagonal matrix” are replaced with the words “triangular matrix”.

5 Problem. Suppose that $A, B : \mathcal{V} \to \mathcal{W}$ and $C : \mathcal{W} \to \mathcal{Z}$ are linear functions. Prove:

1. $\|\mathcal{L}_A\| \geq 0$, and the equality holds if and only if $A = 0$.

2. $\|\mathcal{L}_{aA}\| = |a| \|\mathcal{L}_A\|$.

3. $\|\mathcal{L}_{A+B}\| \leq \|\mathcal{L}_A\| + \|\mathcal{L}_B\|$, and give a concrete example (with a full justification) to show that the inequality may be strict.

4. $\|\mathcal{L}_{CA}\| \leq \|\mathcal{L}_C\| \|\mathcal{L}_A\|$, and give a concrete example (with a full justification) to show that the inequality may be strict.

6 Fact. Suppose that $A : \mathcal{V} \to \mathcal{W}$ is a linear function. Then there exists a unit vector $v \in \mathcal{V}$ such that

$$\|A(v)\| = \mathcal{L}_A.$$
2. Give a concrete example (with a full justification) to show that the result of part one becomes false if \(V = W_1 \oplus W_2 \oplus W_3 \oplus \ldots \oplus W_r \) is replaced with \(V = W_1 \oplus W_2 \oplus W_3 \oplus \ldots \oplus W_r \).

9 Problem. Suppose that \(A : V \longrightarrow W \) is a linear function.

1. Prove: \(\mathcal{L}_A \) is the maximal member of the set \(\{ |\langle A(x), y \rangle| \mid x, y \in \partial B_1 \} \).

2. Prove: \(\mathcal{L}_{(A^*)} = \mathcal{L}_A \).

3. Prove: If \(A \) is a non-zero partial isometry then \(\mathcal{L}_A = 1 \).

4. Prove: If \(B : V \longrightarrow V \) and \(C : W \longrightarrow Z \) are unitary linear functions, then \(\mathcal{L}_{(CAB)} = \mathcal{L}_A \).

5. Give a concrete example (with a full justification) to show that in general one does NOT expect similar (in a formal sense) linear transformations to have the same Lipschitz constants.

10 Problem.

1. Prove: If \(A : V \longrightarrow V \) is an orthodiagonalizable linear function, then

 (a) \(\mathcal{L}_A \) is the maximal member of the set \(\left\{ \frac{|\langle A(x), x \rangle|}{\langle x, x \rangle} \mid x \neq 0 \right\} \).

 (b) \(\mathcal{L}_A \) is the maximal member of the set \(\{ |\langle A(x), x \rangle| \mid x \in \partial B_1 \} \).

 (c) \(\mathcal{L}_A \) is the maximal element of the set \(\{ |\lambda| \mid \lambda \in \sigma_C(A) \} \).

2. Give a concrete example (with a full justification) to show that in a general (i.e. not necessarily orthodiagonalizable) case it may happen that \(\mathcal{L}_A \) is NOT the smallest upper bound for the sets \(\left\{ \frac{|\langle A(x), x \rangle|}{\langle x, x \rangle} \mid x \neq 0 \right\} \), \(\{ |\langle A(x), x \rangle| \mid x \in \partial B_1 \} \), and \(\{ |\lambda| \mid \lambda \in \sigma_C(A) \} \).

3. Prove: If \(B : V \longrightarrow W \) is a linear function then

\[
\mathcal{L}_{(B^*B)} = (\mathcal{L}_B)^2 = \mathcal{L}_{(BB^*)}.
\]