Part I. Short Answer: 4 points each (answer ALL 8 questions).

1. Match each orbital in the list below with the correct description: 3s, 2p, 4d, 1s

 _____ Has the lowest energy
 _____ Has one planar (or angular) node
 _____ Has 2 total nodes
 _____ Is one of a set of 5 degenerate orbitals

2. Of the following species, _______ has the largest radius.
 a) Rb⁺
 b) Sr²⁺
 c) Br⁻
 d) Kr
 e) Ar

3. Of the following atoms, which has the largest first ionization energy?
 a) K
 b) Rb
 c) Sr
 d) Ca
 e) Ba

4. Which of the following kinds of electromagnetic radiation has the highest energy per photon?
 a) visible light
 b) ultraviolet light
 c) infrared light
 d) microwaves
 e) radio waves

5. Which of the following ionic compounds possesses the smallest magnitude lattice energy?
 a) NaF
 b) NaCl
 c) NaBr
 d) NaI
 e) CsI
6. Which of the following sets of quantum numbers \((n, l, m_l, m_s)\) describes the highest energy electron of potassium in its ground state?
 a) \(4, 0, 0, +\frac{1}{2}\)
 b) \(3, 0, 0, +\frac{1}{2}\)
 c) \(3, 2, -2, -\frac{1}{2}\)
 d) \(4, 3, +3, +\frac{1}{2}\)
 e) \(4, 2, -2, -\frac{1}{2}\)

7. Which of the following bonds is most ionic?
 a) H-Cl
 b) F-Cl
 c) O-Cl
 d) Cs-Cl
 e) Li-Cl

8. Write the electron configuration of the following species:
 Cr: ____________________________
 Zr\(^{3+}\): ___________________________

Part II. Problems: answer ALL questions; you must show your work for partial credit

9. For the molecular anion ICl\(_4^–\),
 a) Draw a plausible Lewis dot structure
 b) Identify the electron domain geometry: ____________________
 c) Identify the molecular geometry: ____________________
 d) Identify the hybridization about the central atom: ________________
10. A photon strikes the surface of a block of metal and an electron is ejected. (14 pts)
 a) What is the velocity of this electron if its de Broglie wavelength is 8.7×10^{-11} m?

 b) What is the kinetic energy of this photoelectron?

11. What is the bond dissociation enthalpy of an oxygen-to-oxygen double bond if the enthalpy of combustion for one mole of ethane gas (C_2H_6) is approximately -1.911×10^3 kJ? (12 pts)

<table>
<thead>
<tr>
<th>Bond Dissociation Energies (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C} \equiv \text{O}$ 1072</td>
</tr>
<tr>
<td>$\text{C} \equiv \text{O}$ 799</td>
</tr>
<tr>
<td>$\text{C} \equiv \text{O}$ 358</td>
</tr>
<tr>
<td>$\text{C} \equiv \text{C}$ 348</td>
</tr>
</tbody>
</table>
12. An electron in monatomic hydrogen atom moves from a 1s orbital to a 3d orbital...
 (14 pts)
 a) Is this transition more likely to correspond to the absorption or emission of a photon?

 b) What is the wavelength of the photon?

 c) If this hydrogen electron moves from the 3d orbital to a 3p orbital, what is the ΔE?

 d) What is the potential energy of the electron when it is no longer associated with the atom?

13. For the nitrate anion (NO$_3^-$)...
 (14 pts)
 a) Draw the three most likely resonance forms as Lewis dot structures

 b) How many ‘pi’ bonds does each structure have?

 c) What is the average bond order for the N-O bonds?

 d) How many unhybridized p-orbitals remain on the central atom?
\[\lambda \nu = c \]

\[E_{\text{photon}} = h \nu = \frac{hc}{\lambda} \]

\[\lambda = \frac{h}{p} = \frac{h}{mv} \]

\[E_K = \frac{1}{2} mv^2 \]

\[\Delta p \times \Delta x \geq \frac{h}{4\pi} \quad \text{or} \quad m\Delta v \times \Delta x \geq \frac{h}{4\pi} \]

\[E_n = \left(-2.178 \times 10^{-18} \text{J} \right) \left(\frac{1}{n^2} \right) \]

\[\Delta E = \left(-2.178 \times 10^{-18} \text{J} \right) \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

\[h = 6.626 \times 10^{-34} \text{J} \cdot \text{s} \]

\[c = 2.9979 \times 10^8 \text{ m/s} \]

\[R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \]

\[e = 1.60218 \times 10^{-19} \text{ C} \]

\[1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m} \]

\[1 \text{ J} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \]

\[1 \text{ D} = 3.336 \times 10^{-30} \text{ C} \cdot \text{m} \]

Proton mass: \(m_p = 1.673 \times 10^{-27} \text{ kg} \)

Neutron mass: \(m_n = 1.675 \times 10^{-27} \text{ kg} \)

Electron mass: \(m_e = 9.10939 \times 10^{-31} \text{ kg} \)