# **Properties of Solutions**

### **The Solution Process**

- A solution is a homogeneous mixture of solute and solvent.
- Solutions may be gases, liquids, or solids.
- Each substance present is a component of the solution.
  - The solvent is the component present in the largest amount.
  - The other components are the solutes.

#### The Effect of Intermolecular Forces

- Intermolecular forces become rearranged in the process of making solutions with condensed phases.
- Consider NaCl (solute) dissolving in water (solvent):
  - Water molecules orient themselves on the NaCl crystals.
  - H-bonds between the water molecules have to be broken.
  - NaCl dissociates into Na<sup>+</sup> and Cl<sup>-</sup>.
  - Ion-dipole forces form between the Na<sup>+</sup> and the negative end of the water dipole.
    - Similar ion–dipole interactions form between the Cl<sup>-</sup> and the positive end of the water dipole.
  - Such an interaction between solvent and solute is called **solvation**.
    - If water is the solvent, the interaction is called **hydration**.

## **Energy Changes and Solution Formation**

- There are three steps involving energy in the formation of a solution:
  - Separation of solute molecules  $(\Delta H_1)$ ,
  - Separation of solvent molecules ( $\Delta H_2$ ), and
  - Formation of solute–solvent interactions ( $\Delta H_3$ ).
- We define the enthalpy change in the solution process as:

$$\Delta H_{\text{soln}} = \Delta H_1 + \Delta H_2 + \Delta H_3$$

- $\Delta H_{\text{soln}}$  can either be positive or negative depending on the intermolecular forces.
  - To determine whether  $\Delta H_{\text{soln}}$  is positive or negative, we consider the strengths of all solute–solute, solvent–solvent, and solute–solvent interactions:
  - Breaking attractive intermolecular forces is always endothermic.
    - $\Delta H_1$  and  $\Delta H_2$  are both positive.
  - Forming attractive intermolecular forces is always exothermic.
    - $\Delta H_3$  is always negative.
- It is possible to have either  $\Delta H_3 > (\Delta H_1 + \Delta H_2)$  or  $\Delta H_3 < (\Delta H_1 + \Delta H_2)$ .
  - Examples:
    - MgSO<sub>4</sub> added to water has  $\Delta H_{\text{soln}} = -91.2 \text{ kJ/mol.}$
    - NH<sub>4</sub>NO<sub>3</sub> added to water has  $\Delta H_{\text{soln}} = +26.4 \text{ kJ/mol.}$
    - MgSO<sub>4</sub> is often used in instant heat packs and NH<sub>4</sub>NO<sub>3</sub> is often used in instant cold packs.
- How can we predict if a solution will form?
  - In general, solutions form if the  $\Delta H_{\text{soln}}$  is negative.
  - If  $\Delta H_{\text{soln}}$  is too endothermic a solution will not form.

- "Rule of thumb": polar solvents dissolve polar solutes.
  - Nonpolar solvents dissolve nonpolar solutes.
- Consider the process of mixing NaCl in gasoline.
  - Only weak interactions are possible because gasoline is nonpolar.
  - These interactions do not compensate for the separation of ions from one another.
    - Result: NaCl doesn't dissolve to any great extent in gasoline.
- Consider the process of mixing water in octane (C<sub>8</sub>H<sub>18</sub>).
  - Water has strong H-bonds.
  - The energy required to break these H-bonds is not compensated for by interactions between water and octane.
    - Result: water and octane do not mix.

## **Saturated Solutions and Solubility**

- As a solid dissolves, a solution forms:
  - Solute + solvent  $\rightarrow$  solution
- The opposite process is **crystallization**.
  - Solution  $\rightarrow$  solute + solvent
- If crystallization and dissolution are in equilibrium with undissolved solute, the solution is **saturated**.
  - There will be no further increase in the amount of dissolved solute.
- **Solubility** is the amount of solute required to form a saturated solution.
  - A solution with a concentration of dissolved solute that is less than the solubility is said to be **unsaturated**.
  - A solution is said to be **supersaturated** if more solute is dissolved than in a saturated solution.

## **Factors Affecting Solubility**

- The tendency of a substance to dissolve in another depends on:
  - the nature of the solute.
  - the nature of the solvent.
  - the temperature.
  - the pressure (for gases).

### **Solute-Solvent Interactions**

- Intermolecular forces are an important factor in determining solubility of a solute in a solvent.
  - The stronger the attraction between solute and solvent molecules, the greater the solubility.
    - For example, polar liquids tend to dissolve in polar solvents.
    - Favorable dipole-dipole interactions exist (solute-solute, solvent-solvent, and solute-solvent).
- Pairs of liquids that mix in any proportions are said to be **miscible**.
  - Example: Ethanol and water are miscible liquids.
- In contrast, **immiscible** liquids do not mix significantly.
  - Example: Gasoline and water are immiscible.
- Consider the solubility of alcohols in water.
  - Water and ethanol are miscible because the broken hydrogen bonds in both pure liquids are reestablished in the mixture.

- However, not all alcohols are miscible with water.
  - Why?
  - The number of carbon atoms in a chain affects solubility.
    - The greater the number of carbons in the chain, the more the molecule behaves like a hydrocarbon.
    - Thus, the more C atoms in the alcohol, the lower its solubility in water.
  - Increasing the number of –OH groups within a molecule increases its solubility in water.
    - The greater the number of –OH groups along the chain, the more solute-water H-bonding is possible.
- Generalization: "like dissolves like".
  - Substances with similar intermolecular attractive forces tend to be soluble in one another.
    - The more polar bonds in the molecule, the better it dissolves in a polar solvent.
    - The less polar the molecule the less likely it is to dissolve in a polar solvent and the more likely it is to dissolve in a nonpolar solvent.
- Network solids do not dissolve because the strong intermolecular forces in the solid are not reestablished in any solution.

#### **Pressure Effects**

- The solubility of a gas in a liquid is a function of the pressure of the gas over the solution.
  - Solubilities of solids and liquids are not greatly affected by pressure.
- With higher gas pressure, more molecules of gas are close to the surface of the solution and the probability of a gas molecule striking the surface and entering the solution is increased.
  - Therefore, the higher the pressure, the greater the solubility.
- The lower the pressure, the smaller the number molecules of gas close to the surface of the solution resulting in a lower solubility.
  - The solubility of a gas is directly proportional to the partial pressure of the gas above the solution.
  - This statement is called **Henry's law**.
  - Henry's law may be expressed mathematically as:

$$S_g = kP_g$$

- Where  $S_g$  is the solubility of gas,  $P_g$  the partial pressure, k = Henry's law constant.
- Note that the Henry's law constant differs for each solute—solvent pair and differs with temperature.
- An application of Henry's law is the preparation of carbonated soda.
  - Carbonated beverages are bottled under  $P_{\text{CO}_2} > 1$  atm.
  - As the bottle is opened,  $P_{CO_2}$  decreases and the solubility of  $CO_2$  decreases.
  - Therefore, bubbles of CO<sub>2</sub> escape from solution.

#### Soda Stream Demo

## **Colligative Properties**

- Colligative properties depend on number of solute particles.
- There are four colligative properties to consider:
  - vapor pressure lowering (Raoult's Law).

- boiling point elevation.
- freezing point depression.
- osmotic pressure.

### **Lowering the Vapor Pressure**

- Consider a *volatile* liquid in a closed container.
  - After a period of time an equilibrium will be established between the liquid and its vapor.
  - The partial pressure exerted by the vapor is the *vapor pressure*.
- *Nonvolatile* solutes (with no measurable vapor pressure) reduce the ability of the surface solvent molecules to escape the liquid.
  - Therefore, vapor pressure is lowered.
  - The amount of vapor pressure lowering depends on the amount of solute.
- Raoult's law quantifies the extent to which a nonvolatile solute lowers the vapor pressure of the solvent.
  - If  $P_A$  is the vapor pressure with solute,  $P_A^\circ$  is the vapor pressure of the pure solvent, and  $X_A$  is the mole fraction of A, then

$$P_A = X_A P_A^o$$

- An **ideal solution** is one that obeys Raoult's law.
  - Real solutions show approximately ideal behavior when:
    - the solute concentration is low.
    - the solute and solvent have similarly sized molecules.
    - the solute and solvent have similar types of intermolecular attractions.
  - Raoult's law breaks down when the solvent–solvent and solute–solute intermolecular forces are much greater or weaker than solute–solvent intermolecular forces.

## **Boiling-Point Elevation**

- A nonvolatile solute lowers the vapor pressure of a solution.
- At the normal boiling point of the pure liquid, the solution has a has a vapor pressure less than 1 atm.
  - Therefore, a higher temperature is required to reach a vapor pressure of 1 atm for the solution  $(\Delta T_b)$ .
- The **molal boiling-point-elevation constant**,  $K_b$ , expresses how much  $\Delta T_b$  changes with molality, m:  $\Delta T_b = K_b m$
- The nature of the solute (electrolyte vs. nonelectrolyte) will impact the colligative molality of the solute.

## **Freezing-Point Depression**

- When a solution freezes, crystals of almost pure solvent are formed first.
  - Solute molecules are usually not soluble in the solid phase of the solvent.
  - Therefore, the triple point occurs at a lower temperature because of the lower vapor pressure for the solution.
- The melting-point (freezing-point) curve is a vertical line from the triple point.
  - Therefore, the solution freezes at a lower temperature  $(\Delta T_f)$  than the pure solvent.
  - The decrease in freezing point ( $\Delta T_{\rm f}$ ) is directly proportional to molality.
- $K_{\rm f}$  is the molal freezing-point-depression constant.

$$\Delta T_{\rm f} = K_{\rm f} m$$

• Values of  $K_f$  and  $K_b$  for most common solvents can be found in Table 13.4.

#### **Osmosis**

• Semipermeable membranes permit passage of some components of a solution.

- Often they permit passage of water but not larger molecules or ions.
- Examples of semipermeable membranes are cell membranes and cellophane.
- Osmosis is the net movement of a solvent from an area of low solute concentration to an area of high solute concentration.
- Consider a U-shaped tube with a two liquids separated by a semipermeable membrane.
  - One arm of the tube contains pure solvent.
  - The other arm contains a solution.
  - There is movement of solvent in both directions across a semipermeable membrane.
    - As solvent moves across the membrane, the fluid levels in the arms become uneven.
      - The vapor pressure of solvent is higher in the arm with pure solvent.
  - Eventually the pressure difference due to the difference in height of liquid in the arms stops osmosis.
- Osmotic pressure,  $\pi$ , is the pressure required to prevent osmosis.
  - Osmotic pressure obeys a law similar in form to the ideal-gas law.
    - For n moles, V= volume, M= molarity, R= the ideal gas constant, and an absolute temperature, T, the osmotic pressure is:

$$\pi V = nRT$$

$$\pi = \left(\frac{n}{V}\right)RT = MRT$$

- Two solutions are said to be *isotonic* if they have the same osmotic pressure.
  - *Hypotonic* solutions have a lower  $\pi$ , relative to a more concentrated solution.
  - Hypertonic solutions have a higher  $\pi$ , relative to a more dilute solution.
- We can illustrate this with a biological system: red blood cells.
  - Red blood cells are surrounded by semipermeable membranes.
    - If red blood cells are placed in a hypertonic solution (relative to intracellular solution), there is a lower solute concentration in the cell than the surrounding tissue.
      - Osmosis occurs and water passes through the membrane out of the cell.
      - The cell shrivels up.
      - This process is called *crenation*.
    - If red blood cells are placed in a hypotonic solution, there is a higher solute concentration in the cell than outside the cell.
      - Osmosis occurs and water moves into the cell.
      - The cell bursts (*hemolysis*).
  - To prevent crenation or hemolysis, IV (intravenous) solutions must be isotonic relative to the intracellular fluids of cells.
- Everyday examples of osmosis include:
  - If a cucumber is placed in NaCl solution, it will lose water to shrivel up and become a pickle.
  - A limp carrot placed in water becomes firm because water enters via osmosis.
  - Eating large quantities of salty food causes retention of water and swelling of tissues (edema).
  - Water moves into plants, to a great extent, through osmosis.
  - Salt may be added to meat (or sugar added to fruit) as a preservative.
    - Salt prevents bacterial infection: A bacterium placed on the salt will lose water through osmosis and die.
  - Active transport is the movement of nutrients and waste material through a biological membrane against a concentration gradient.
    - Movement is from an area of low concentration to an area of high concentration.
    - Active transport is not spontaneous.
      - Energy must be expended by the cell to accomplish this.

## **Determination of Molar Mass**

|   | A mry of the | four collie | ativia meanant | iaa marr ba | mand to d | latamaina mala |       |
|---|--------------|-------------|----------------|-------------|-----------|----------------|-------|
| • | Any of the   | Tour come   | auve propert   | ies may be  | usea to c | letermine mola | mass. |